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Edge-disjoint paths in expanders: online with removals

Nemanja Draganić∗ Rajko Nenadov†

Abstract

We consider the problem of finding edge-disjoint paths between given pairs of vertices in

a sufficiently strong d-regular expander graph G with n vertices. In particular, we describe

a deterministic, polynomial time algorithm which maintains an initially empty collection of

edge-disjoint paths P in G and fulfills any series of two types of requests:

1. Given two vertices a and b such that each appears as an endpoint in O(d) paths in P
and, additionally, |P| = O(nd/ logn), the algorithm finds a path of length at most logn

connecting a and b which is edge-disjoint from all other paths in P , and adds it to P .
2. Remove a given path P ∈ P from P .

Importantly, each request is processed before seeing the next one. The upper bound on the

length of found paths and the constraints are the best possible up to a constant factor. This

establishes the first online algorithm for finding edge-disjoint paths in expanders which also

allows removals, significantly strengthening a long list of previous results on the topic.

1 Introduction

Finding a collection of pairwise edge-disjoint paths which connect prescribed pairs of vertices

(ai, bi)i∈[r] in a graph G is a classical and extensively studied problem in computer science. It

is an NP-complete problem which becomes tractable when r is fixed [22]. In the case of directed

graphs, the problem remains NP-complete even for r = 2 [11].

In this paper we focus on the extensively studied instance of this problem when G is a sufficiently

strong d-regular expander on n vertices. Peleg and Upfal [21] showed that the problem on such

graphs becomes tractable for significantly larger values of r, under an assumption that all the given

pairs (ai, bi) are pairwise disjoint. In particular, they showed that any set of at most r = O(nc)

disjoint pairs of vertices can be connected by edge-disjoint paths, for some c < 1/2 which depends

on the expansion properties of G, and such paths can be found in polynomial time. Let us briefly

discuss why this is not surprising and establish a (theoretical) upper bound of r that can be attained.

Routing in expanders. Without going into detail of the definition of d-regular expanders (Def-

inition 1.1), let us note that one of their main features is that the diameter is O(log n) even if

we remove, say, up to d/3 edges touching each vertex. Therefore, if we can ‘nicely’ distribute

paths (i.e. no vertex belongs to too many) between (a1, b1), . . . , (ar−1, br−1), then this observation

immediately tells us that we can connect ar and br using a path of length O(log n). As there
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exist expanders in which most pairs of vertices are actually at distance Θ(log n), this is clearly a

length one cannot avoid if the pairs are chosen adversarially. Moreover, there also exist expanders

in which the second shortest path between every two vertices is of length Ω(log n) (i.e. expanders

with high girth), which provides further evidence that shorter paths, even if they exist, are not

feasible. Therefore, if we restrict to sets of disjoint pairs, the largest r one can hope for is of order

n/ log n. In a more general case where we do not impose such a constraint, as G has nd/2 edges,

the largest r is (or could be) of order nd/ log n.

Previous results. The result of Peleg and Upfal falls short of the theoretically best possible

bound on r, and it was an important open problem to determine whether such a bound is (algo-

rithmically) attainable. Starting with Broder, Frieze and Upfal [6], who improved r to Θ(n/ logC n),

for some C ≥ 7 (which, again, depends on the expansion properties), this problem has attracted

significant attention. The bound on r was further improved by Leighton and Rao [17] (see [18, Sec-

tion 3.18]), Broder, Frieze and Upfal [7], and Leighton, Lu, Rao, and Srinivasan [16, 19]. Finally,

Frieze [13] gave a randomised polynomial time algorithm which connects any pair of Θ(nd/ log n)

pairs of vertices, as long as each vertex appears as an endpoint at most εd times, for some constant

ε > 0. In the case of directed expanders, the same result was established later by Bohman and

Frieze [4]. We note that in the case where G is a random graph with average degree d, an even

better bound on r of order nd/ logd n was obtained by Broder, Frieze, Suen, and Upfal [5] and

Frieze and Zhao [14] (note that the diameter of a random graph can be somewhat smaller than

the diameter of an expander graph, which results in slightly larger r). As the latest result on this

topic, Alon and Capalbo [2] have further improved the undirected case by designing a deterministic

polynomial time algorithm which not only can deal with the optimal number of requested pairs,

but their algorithm is also online in the sense that the pairs are given one by one, and the algorithm

has to find a path between the current pair of vertices before seeing the next one (once a path is

established, it cannot be altered).

A related problem of finding vertex-disjoint paths in random graphs was considered by Shamir

and Upfal [23], Hochbaum [15], Broder, Frieze, Suen, and Upfal [8] and, quite recently, Draganić,

Krivelevich, and Nenadov [9].

Our contribution. We generalise all these results by presenting an online deterministic algorithm

with removals: The client can request a new pair of vertices to be connected, or a previously

established path to be removed. The client can continue with requests indefinitely as long as

the total number of (active) paths is at most O(nd/ log n) in case of expanders, that is, at most

O(nd/ logd n) in the case of the so-called (n, d, λ)-graphs with λ < d1−ε (which covers the case of

random d-regular graphs). In addtion, we always guarantee that the length of the found paths is at

most of order log n, which resolves a question of Alon and Capalbo [2]. Our approach significantly

deviates from the methods used in the aforementioned work. It is conceptually simple and exploits

the previously discussed, fundamental reason why finding many edge-disjoint paths is possible –

even if we only have a subset of edges at our disposal, the diameter is still O(log n).

The paper is organised as follows. In the next section we formally state our results. Section 2

describes a data structure that we call Edge-Oracle, which is the heart of the algorithm. Instead

of working with all available edges to find a path between two given vertices, this data structure

carefully chooses, in an online fashion, a subset of edges which makes sure that the found paths

are well distributed. Finally, in Section 3 we describe the algorithm for establishing new paths and
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prove its correctness. The algorithm is largely based on Breadth-First Search, with the edges used

to explore the graph obtained via Edge-Oracle.

1.1 Online routing with removals

We say that a directed graph (digraph for short) is d-regular if the in- and out-degree of every

vertex is d. Given a d-regular graph G (directed or undirected) and r ∈ N, we define the r-

Routing game on G played by two players, Adversary and Router, as follows. Throughout the

game, Router maintains a family of pairwise edge-disjoint paths P, which is initially empty. In

each turn, Adversary has two types of requests:

• Find-Path a b: Given vertices a and b in V (G) such that both a and b appear as endpoints of

less than d/200 paths in P and, additionally, |P| < r, Router is required to find a path from

a to b (this path has to be directed from a to b if G is a directed graph) which is edge-disjoint

from all the other paths in P. The found path is then added to P. If such a path does not

exist, Router loses the game.

• Remove-Path P : A path P ∈ P is removed from P.

It is important to note that each request has to be fulfilled by Router before seeing the next one.

We say that Router wins the r-Routing game if she can satisfy any (infinite) series of requests.

Definition 1.1 (Expander graphs). We say that a n-vertex d-regular graph G is an (β, γ)-expander,

for some β, γ > 0, if for every S ⊆ V (G), |S| ≤ n/2, we have

eG(S) ≤
{

γd|S| if |S| ≤ βn

d|S|/3 if βn < |S| ≤ n/2.

A d-regular digraph D is a (β, γ)-expander if the 2d-regular (multi-)graph D∅ obtained from D by

ignoring the directions of the edges is a (β, γ)-expander.

The bound on the number of edges within large subsets is somewhat arbitrary and chosen for

convenience, akin to the one used by Alon and Capalbo [2]. The following is our main theorem.

Theorem 1.2. Let G be a d-regular (β, γ)-expander graph (directed or undirected) with n vertices,

for 200 < d < n, positive constants β and γ < 1/1000, and n large enough. Then Router has a

strategy to win the r-Routing game for r = εnd/ log n, for a constant ε = ε(β, γ) > 0. Moreover,

Router can respond to each request in O(n3d3) time and each path in P is of length O(log n).

Let us remark that our main goal was to: (a) show that a strategy for winning an r-Routing

game, for r = Θ(nd/ log n), exists, and (b) that it can be implemented in polynomial time. We

leave it for future work to improve the time complexity. Moreover, the chosen constants could be

improved with a more meticulous analysis; we made a conscious decision not to pursue this in order

to maintain clarity and simplicity in our presentation.

When applied on a graph with stronger guarantees on its edge distribution, the algorithm

underpinning Theorem 1.2 allows for an improved bound on r and the length of found paths. This

is summarised in the following result.

Definition 1.3. We say a graph G is an (n, d, λ)-graph if it is a d-regular graph with n vertices

and the second largest absolute eigenvalue of its adjacency matrix is at most λ.
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It is well-known that, when λ is bounded away from d , (n, d, λ)-graphs have stronger expansion

properties than the ones given in Definition 1.1 (see [3, Section 9.2]). A random d-regular graph

with n vertices, for example, is with high probability an (n, d,Θ(
√
d))-graph (see [12]). Moreover,

there exist explicit constructions of (n, d,Θ(
√
d))-graphs, which include the famous Ramanujan

graphs [20].

Theorem 1.4. Let G be an (n, d, λ)-graph for 200 < d < n, where λ < εd for a small enough

constant ε > 0. Then Router has a strategy to win the r-Routing game for r = αnd log(d/λ)
logn , for

some absolute constant α > 0. Moreover, Router can respond to each request in O(n3d3) time and

each path in P is of length O
(

logn
log(d/λ)

)

.

Finally, let us note that for our results we do not use the fact that a (di)graph G is d-regular in

an essential way, and the same algorithm would work assuming that each degree is within (1± ε)d.

The choice to work with regular graphs is, again, purely for simplicity.

1.2 Notation

If G is a (directed) graph, we denote with eG(S) the number of edges with both endpoints in S, for

a given S ⊆ V (G). Let D be a directed graph, and let S1, S2 ⊆ V (D) be subsets of its vertices. By

outD(S1, S2) we denote the number of edges (u, v) with u ∈ S1 and v ∈ S2, and by inD(S1, S2) the

number of edges (u, v) with u ∈ S2 and v ∈ S1. We write outD(S1) to denote outD(S1, V (D)). We

denote by OutD(S1) the set of vertices v /∈ S1 such that there exists a vertex u ∈ S1 with (u, v) ∈ D.

Similarly, InD(S1) denotes the set of vertices v /∈ S1 such that there exists an edge (v, u) ∈ D for

some u ∈ S1. We write outD(v) and inD(v) for the out- and in- degree of v. A digraph is d-regular

if it both the out- and in-degree of every vertex is d. By
←−
D we denote the digraph obtained from

D by reversing the direction of each of its edges.

2 Edge-Oracle: a data structure for accessing edges

The following lemma shows that one can choose, in an online manner, a subset of edges in a digraph

D with a significant imbalance between in- and out-degrees of some vertices. Why this is useful

will become apparent in the next section, where we prove Theorem 1.2. For now, let us remark

that the lemma can be viewed as a generalization of a result of Aggarwal et al. [1, Theorem 2.2.7]

which, in turn, is an algorithmic version of an earlier result by Feldman, Friedman and Pippenger

[10].

Lemma 2.1. Suppose D is a d-regular digraph with n vertices, for some d ≥ 10, such that for

every S ⊆ V (D) of size |S| ≤ βn we have

eD(S) ≤ γ|S|d,

for γ ≤ 1/50. Then there exists a data structure, dubbed Edge-Oracle(D), which maintains an

initially empty set of edges H ⊆ D and supports the following two requests:

• add-edge v: Given a vertex v ∈ V (D) with outH(v) < ⌊d/2⌋, the data structure returns an

out-edge e = (v,w) ∈ D \H of v such that inH(w) < ⌊d/5⌋, and adds it to H.

Note: this request is only allowed if |H| < βdn/120.

4



• remove-edge e: Remove a given edge e ∈ H from H.

Both requests are handled using a deterministic algorithm. The time complexity of Add-Edge is

O(n2d2), and of Remove-Edge is O(nd).

It is worth noting that the proposed implementation of the data structure does not depend on

γ and β, and it is up to the user of the data structure to respect the constraints under which

add-edge can be invoked.

Proof of Lemma 2.1. The implementation of Add-Edge is given in Algorithm 1, and the im-

plementation of Remove-Edge in Algorithm 2. In Algorithm 1, we use the following definition of

an alternating walk.

Definition 2.2 (Alternating walk). Given a subsets of edges E1, E2 ⊆ E(D), we say that a sequence

of vertices (v1, v2, . . . , vk), which are not necessarily distinct, forms an (E1, E2)-alternating walk W

from v1 to vk if (v2i+1, v2i+2) ∈ E1 for every 0 ≤ i ≤ k/2 − 1, and (v2i+1, v2i) ∈ E2 for every

1 ≤ i < k/2.

Note: the direction of the edges along W does not form a directed walk. In particular, they form

what is known as an anti-directed walk.

Other than the subset of edges H, the data structure maintains a subset B ⊆ D \H of buffer

edges and two sets of vertices – the saturated ones denoted by Sat which are sinks of many edges in

H ∪B, and those with a low number of out-neighbours which are not saturated, denoted by Low.

These sets are initially empty. In the description of the algorithm we use F to denote the set of

edges H ∪B, always with respect to the current H and B.

Invariants. Let us, for now, assume that lines 2, 7, and 13 in add-edge are well-defined, that

is, a desired edge or a walk exist whenever these lines are executed. More formally, we could say

that whenever we reach one of these lines and a desired edge/walk does not exist, we abandon the

current request and reset the internal state to how it was right before the request. Then, before

handling each request (either add-edge or remove-edge), the following properties hold:

(P1) Sat = {v ∈ V (D) : inF (v) ≥ d/10},

(P2) Low = {v ∈ V (D) : outD(v,Sat) ≥ d/4}, and

(P3) if v ∈ Low then outF (v) = ⌊d/2⌋.

Moreover, the following holds throughout each execution of add-edge:

(C1) if v ∈ Sat then inF (v) ≥ d/10,

(C2) if v ∈ Low then outD(x,Sat) ≥ d/4,

(C3) if v /∈ Low then outB(v) = 0, and

(C4) outF (v) ≤ ⌊d/2⌋ and inF (v) ≤ ⌊d/5⌋ for every v ∈ V (D).

These properties follow from the description of the algorithm and the fact that they are trivially

satisfied before the first request. We now show a useful corollary of (C1)–(C4).

Claim A. Throughout the execution of add-edge we have |Low| < βn/12.
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Input : v ∈ V (D) with outH(v) < ⌊d/2⌋
1 if v ∈ Low then
2 Choose any out-edge e = (v,w) ∈ B of v
3 Add e to H
4 Remove e from B
5 return e

6 else
7 Choose any out-edge e = (v,w) ∈ D \ F of v such that w /∈ Sat
8 Add e to H
9 if inF (w) ≥ d/10 then add w to Sat

10 while there exists x ∈ V (D) \ Low such that outD(x,Sat) ≥ d/4 do
11 Add x to Low
12 while outF (x) < ⌊d/2⌋ do
13 Find a (D \ F,B)-alternating walk W (see Definition 2.2) from x to some y with

inF (y) < ⌊d/5⌋
14 for e ∈ P do
15 if e ∈ D \ F then add e to B
16 else remove e from B

17 if inF (y) ≥ d/10 then add y to Sat

18 return e

Algorithm 1: add-edge(v)

Proof. Suppose, towards a contradiction, that there exists a series of requests which results in

|Low| ≥ ⌊βn/12⌋ at some point. Consider the first moment when this happens, in which case we

have that equality holds, and note that this has to be during an execution of add-edge, as during

the execution of remove-edge no vertices are added to Low. Then

|Sat|d/10
(C1)
≤ inF (Sat) ≤ e(F ) = e(H) + e(B) < βdn/120 + e(B)

(C3)
≤ βdn/120 + outB(Low) ≤ βdn/120 + |Low|d ≤ (1 + 1/10)|Low|d,

where the last inequality follows from the assumption on the size of Low. Therefore,

|Sat ∪ Low| ≤ 12|Low| ≤ βn.

On the one hand, by the assumption on D we have

outD(Low,Sat) ≤ eD(Low ∪ Sat) ≤ |Low ∪ Sat|γd < 12γ|Low|d,

and on the other hand, by (C2),

outD(Low,Sat) > d|Low|/4,

which leads to a contradiction for γ < 1/48.
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Input : edge e = (v,w) ∈ H

1 Remove e from H
2 if v ∈ Low then add e to B
3 else if w ∈ Sat and inH(w) < d/10 then
4 Remove w from Sat
5 while there exists x ∈ Low with outD(x,Sat) < d/4 do
6 Remove from B all the out-edges of x
7 Remove x from Low
8 Remove every y ∈ Sat with inF (y) < d/10 from Sat

Algorithm 2: remove-edge(e)

Correctness. We need to check that a returned edge e = (v,w) has the required properties, that

is, inH(w) < ⌊d/5⌋. If v ∈ Low (line 1), then this follows from (C4), F = H ∪ B, and e ∈ B.

Otherwise, it follows from w /∈ Sat (line 7) and (P1).

The algorithm add-edge is well-defined. As lines 2 and 7 happen before any changes to the

internal state of the data structure, we can use (P1)–(P3) to prove these steps are well-defined.

The existence of an edge e = (v,w) ∈ B in line 2 follows from outH(v) < ⌊d/2⌋ (the assumption

of add-edge), (P3), and F = H ∪B. The existence of a required edge in line 7 follows from (C4),

which implies outD\F (v) ≥ d − ⌊d/2⌋ ≥ d/2 (recall D is d-out-regular), and (P2) together with

v /∈ Low. Showing that line 13 is well-defined is more complicated, and this is what we do next.

Claim B. Line 13 is well-defined.

Proof. Throughout the argument we use the subscript 0, as in Sat0 for example, to denote the

state of a set as it was just before the current invocation of add-edge. Consider some point during

the execution of the algorithm when it has reached line 13. We need to show that, at that point, a

desired alternating walk exists. Suppose, towards a contradiction, that this is not the case.

Let ∆ = B \ B0 and note that F \ F0 = ∆ ∪ {e}. Let Y ⊆ V (D) \ Sat0 be the set of all

y ∈ V (D) \ Sat0 such that there exists an (D \F,B)-alternating walk from x to y. As x was added

to Low in line 11, we know x /∈ Low0, and hence by (P2) we have out(v,Sat0) < d/4. Together with

outF (x) < d/2 (condition in line 12), this implies Y is non-empty because outD\F (x, V (D)\Sat0) ≥
d− d/2− d/4. Set X = In∆(Y ) (as x ∈ X, it is non-empty as well). By (C3) and the definition of

∆, since ∆ does not contain edges emanating from Low0, we have X ⊆ Low \ Low0.

Observe that inF (y) ≥ ⌊d/5⌋ for every y ∈ Y , as otherwise a desired path exists. From

inF (y) = inF0
(y) + in∆(y) + 1y=w

and y /∈ Sat0, we conclude

in∆(y) ≥ ⌊d/5⌋ − 1− d/10 > d/11.

This implies

|Y |d/11 ≤ in∆(Y,X) ≤ d|X|,
thus |Y | ≤ 11|X|.

Next, note that for every y ∈ OutD\F (X) there exists an (D \ F,B)-alternating walk from x to
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y, thus OutD\F (X) ⊆ Sat0 ∪ Y as otherwise we get a contradiction with the choice of Y . On the

one hand, from (C4), X ∩ Low0 = ∅, and (P2), we have

eD(X ∪ Y ) ≥ outD\F (X,Y ) ≥
∑

x∈X

outD\F (x)− outD(x,Sat0) ≥ |X|d/4.

On the other hand, since |Y | ≤ 11|X| and X ⊆ Low, by Claim A we conclude |X ∪ Y | < βn, thus

by the assumption on D we have

eD(X ∪ Y ) < 12γ|X|d,
which is a contradiction for γ < 1/48.

Complexity. Finding an alternating walk in line 14 can be done using BFS, which takes O(nd)

time. Within one call of add-edge this line is executed at most O(nd) times, which gives O(n2d2)

and this dominates complexity coming from any other step of add-edge. With careful bookkeep-

ing, remove-edge can be implemented in O(nd).

3 Disjoint paths via Edge-Oracle

In this section we prove Theorem 1.2.

Pre-processing G. Suppose that G is an undirected graph. If d is even, we find an Eulerian trail

in G and orient the edges along this trail to obtain a (d/2)-regular digraph D. Note that if G is

a (β, γ)-expander, then so is D, by definition. If d is odd, we first remove a perfect matching (the

existence follows from Tutte’s theorem and the fact that G is d-edge-connected) and then repeat

the previous procedure. Note that in this case we end up with a digraph which is not quite a

(β, γ)-expander, but the upper bounds on eD(S) (see Definition 1.1) hold up to an additive factor

of O(d), which is negligible thus we will not concern ourselves with it.

By the previous discussion, we can assume now that G is an (β, γ)-expanding d-regular digraph.

Next, we split G into three disjoint (spanning) subgraphs G = G1 ∪G2 ∪G3, where G1 and G2 are

d′-regular for d′ = ⌊d/10⌋, and G3 is consequently (d − 2d′)-regular. This can be done as follows:

Create an auxiliary bipartite graph B = (V1 ∪ V2, EB), where each Vi is a copy of V (D) and there

is an edge between v ∈ V1 and w ∈ V2 if (v,w) ∈ D. Then B is d-regular, hence its edges can

be decomposed into d perfect matchings (in polynomial time). Take any d′ perfect matchings and

assign the corresponding edges to G1, and another d′ (different) perfect matchings and assign the

corresponding edges to G2.

Internal state. We maintain an initially empty sets of edges H1 ⊆ G1,H2 ⊆
←−
G2, and H3 ⊆ G3,

and make use of two instances of Edge-Oracle data structure, out-oracle = Edge-Oracle(G1)

and in-oracle = Edge-Oracle(
←−
G2), noting that both G1 and

←−
G2 are d′-regular and for every

S ⊆ V (Gi) of size |S| ≤ βn, i ∈ {1, 2}, we have

eGi
(S) ≤ γ|S|2d = 20γ|S|d′ ≤ 1

50
|S|d′,

as γ < 1
1000 , so the conditions of Lemma 2.1 are satisfied for G1 and

←−
G2. Recall that we can add

and remove edges from Hi using the respective oracle as long as |Hi| ≤ cnd where c = β/1200.
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Algorithm. We process Find-Path(a, b) as follows:

1. Let (Ha, Va) = Oracle-BFS(a, out-oracle) and (Hb, Vb) = Oracle-BFS(b, in-oracle).

2. Find a shortest path P ′ from Va to Vb in G3 \ H3. Let a′ ∈ Va be the starting point of P ′,

and b′ ∈ Vb the ending point.

3. Take a shortest path Pa from a to a′ in Ha and a shortest path Pb from b to b′ in Hb. The

desired path P is then the concatenation of Pa, P
′, and

←−
Pb.

4. (Internal update) For every e ∈ Ha \ E(Pa) call Remove-Edge(e) on out-oracle. Simi-

larly, for every e ∈ Hb \ E(Pb) call Remove-Edge(e) on in-oracle. Set H1 := H1 ∪ E(Pa),

H2 := H2 ∪ E(Pb), and H3 := H3 ∪E(P ′).

Input : a vertex v ∈ V
an instance oracle of Edge-Oracle data structure

1 q = Queue(v)
2 V ′ = {v}
3 H ′ = ∅
4 while q is not empty, |V ′| ≤ βn/5, and e(H ′) < cnd/2 do
5 u = q.dequeue()
6 for i = 1, . . . , ⌊d′/4⌋ do
7 (u,w) = oracle.add-edge(u)
8 if w 6∈ V ′ then
9 q.enqueue(w)

10 Add w to V ′

11 Add the edge (u,w) to H ′

12 return (H ′, V ′)

Algorithm 3: Oracle-BFS(v, oracle)

Processing Remove-Path(P ) is significantly simpler:

1. For each e ∈ H1 ∩E(P ) call Remove-Edge(e) on out-oracle. For each e ∈ H2 ∩E(
←−
P ) call

Remove-Edge(e) on in-oracle.

2. Set H1 := H1 \E(P ), H2 := H2 \ E(
←−
P ), and H3 := H3 \ E(P ).

Note that Add-Edge and Remove-Edge are called O(nd) times, which results in O(n3d3) and

this dominates all other steps of the algorithm.

In the rest of the proof we show that the algorithm for finding new paths is well-defined. We

denote by Ps(v) the number of paths in P which start at v, and by Pe(v) the number of those

which end at v. Recall that, by the rules of the game, we always have |Ps(v)|, |Pe(v)| ≤ d/200, and

that |P| ≤ r = εnd/ log n, for a small enough ε = ε(γ, β).
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Invariants. Before each request the following properties hold:

(P1)
⋃

P∈P E(P ) = H1 ∪
←−
H2 ∪H3,

(P2) |H1|, |H2| ≤ |P| log n ≤ cnd/2 and |H3| ≤ 300|P|/β,

(P3) outH1
(v) ≤ inH1

(v) + Ps(v) and outH2
(v) ≤ inH2

(v) + Pe(v) for every v ∈ V ,

(P4) inHi
(v) ≤ ⌊d′/5⌋ for every v ∈ V and i ∈ {1, 2}.

The property (P4) is responsible for bounding the number of times each vertex is used as an inner

vertex of paths in P, and is the heart of the proof!

The property (P1) follows from the description of the algorithm. To see that the property (P3)

holds, note that every out-edge of a vertex in a path which belongs to H1 is preceded by an in-edge

of v in H1, unless it is the first vertex which is accounted by Ps(v). Note that we do not have

equality as the out-edge and the in-edge might not belong to the same Hi. The second inequality is

(P1) is obtained analogously, taking into account that the edges in H2 are reversed compared to G.

Since Hi for i ∈ {1, 2} is obtained through Add-Edge requests to an oracle, property (P4) holds

by the definition. It remains to show that (P2) holds. This is done in the following two claims.

Claim C. Assuming that every call of Add-Edge in line 7 of Algorithm 3 is valid (that is,

assumptions of Add-Edge are satisfied), after Oracle-BFS finishes, every vertex in V ′ is at

distance at most log n from v, using only edges in H ′. Furthermore, |V ′| ≥ βn/5.

Proof. Let T be the tree rooted at v consisting of edges (u,w) added to H ′, such that w was not

in V ′ when the edge (u,w) was returned by the oracle. Let ℓ be the depth of T , and note that

vertices in q are all contained in levels ℓ− 1 and ℓ. Importantly, any vertex in V ′ which is not in q

has exactly ⌊d′/4⌋ > d′/5 out-edges in H ′. Denote by Si the i-th level, and let us show that Sℓ−1

is at distance at most log n− 1 from the root v, which will give that every vertex in V ′ = V (T ) is

at distance at most log n from v. Let S<i be the union of the vertices in the first i − 1 levels. It

suffices to show that |Si| ≥ 2|S<i| for all i < ℓ.

Suppose that is not the case for some i, that is, |Si| < 2|S<i|. From OutH′(S<i) ⊆ S<i ∪ Si we

get

eG(S<i ∪ Si) ≥ eH′(S<i ∪ Si) ≥ outH′(S<i) ≥ |S<i|d′/5. (1)

As |S<i ∪ Si| < 3|S<i| and |V ′| ≤ βn, by the assumption that G is an expander we have

eG(S<i ∪ Si) ≤ γ · 3|S<i| · 2d,

which contradicts (1) as γ < 1/300 and d′ = d/10.

To finish, we have to show that the algorithm terminates when |V ′| ≥ βn/5. If that was not the

case, then either H ′ contans at least cnd/2 edges, or q is empty. If the former is true, then H ′ ⊆ G

is a digraph whose vertex set V ′ is of size at most |V ′| ≤ βn/5 and which has at least

e(H ′) ≥ cnd/2 =
β

2400
nd > γ|V ′| · 2d

edges, again contradicting the assumption that G is an expander. Finally, it is easy to see that q

cannot be empty, as then again H ′ is a graph on at most βn/5 vertices with every vertex of degree

at least d′/5 – thus a contradiction as in the previous case.
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Claim D. Let Va, Vb ⊆ V be sets of size at least βn. Then for any subset of edges R ⊆ G3 of size

|R| ≤ βnd/50, G3 \R contains a path P from Va to Vb of length at most 300/β.

Proof. Let G′ = G3 \R. Note that for every S ⊆ V (G) of size βn/5 ≤ |S| ≤ n/2 we have

outG′(S, V \ S) ≥ (d− 2d′)|S| − eG(S)− |R| ≥ 4d|S|/5 − 2d|S|/3 − |S|d/10 ≥ |S|d/30,

thus

|OutG′(S)| ≥ |S|/30 ≥ βn/150.

Therefore, there are more than n/2 vertices which can be reached from Va within 150/β steps in

G′. Note that this estimate can be improved, but for us this simple bound suffices.

The same argument shows that there are more than n/2 vertices from which a vertex in Vb can

be reached within 150/β steps. Therefore, there exists a vertex which can be both reached from

Va in 150/β steps, and which can reach Vb in 150/β steps, implying a desired path from Va to Vb

exists.

With Claim C and Claim D at hand, we clearly see that in Step 3 of the main algorithm, the

found paths Pa, Pb are always of length at most log n, while P ′ is of length at most 300/β (and is

disjoint of H3 as we let R = H3, and inductively we have |R| = |H3| ≤ 300|P|/β ≤ βnd/50). Since

we only add the edges of those paths to H1,H2 and H3 respectively, (P2) follows.

To complete the proof, we show that line 7 of Algorithm 3 is valid. Indeed, before each execution

of Algorithm 3, by (P2) we have |H1|, |H2| ≤ cnd/2, hence by the definition of the oracle, we can

make at least cnd/2 new requests of the form add-edge(v), as long as outHi
(v) ≤ d′/2. By

(P3) and (P4), we further know that before we call Algorithm 3, we always have outH1
(v) ≤

inH1
(v) + Ps(v) ≤ d′/5 + d′/20 ≤ d′/4. Therefore, since by the description of the algorithm we

request a vertex v at most ⌈d′/4⌉ times, we have that during the execution of the algorithm we

always have outHi
(v) ≤ d′/2, which finishes the proof.

3.1 Sketch of proof for Theorem 1.4

Recall that by the Expander mixing lemma, in every (n, d, λ)-graph G it holds that every set

of vertices of size αn has average degree at most αd + λ (see Section 9.2 in [3]). Hence G is a

(β, γ)-expander for β = 1/104 and γ = 1/5000, for say λ < d/104.

The proof of Theorem 1.4 is essentially the same as the proof of Theorem 1.2 presented in this

section, up to Claim C, where we can use the stronger expansion properties of (n, d, λ)-graphs to

show that every vertex in V ′ is in fact at distance at most O( logn
log(d/λ) ) from v. Indeed, even after

deleting a constant fraction of edges at each vertex in an (n, d, λ)-graph, each set up to a certain

linear size expands by a factor of Θ( d
2

λ2 ) (which again follows from the Expander mixing lemma,

see Lemma 3.6 in [9]). Consequently, we have |Si| ≥ Θ( d
2

λ2 )|S<i|, which evidently gives the required

distance between v and every vertex in V ′.
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